CEA Industry Forum

Audio/Video Inter-Device Power Control

Bruce Nordman Lawrence Berkeley National Laboratory October 22, 2013

http://nordman.lbl.gov/avcontrol

Slide 1 of 21

LAWRENCE BERKELEY NATIONAL LABORATORY

Problems for A/V systems

In a local network

- How do people manage starting and stopping content streams?
- How do people manage the power state of A/V devices?

Context

- · Many devices
- · Multiple simultaneous streams
- · Dynamic networks
- Multiple displays per stream
- Automatic functions
- · Diverging audio, video
- · Many users
- Multiple technologies / stream

Slide 2 of 21

Energy context

- · Audio/video devices in US*
 - About 140 TWh/year electricity (~ \$14 billion/year)
 - ~5% of buildings electricity
 - >3x data center electronics
- · Power level reductions essential
 - On, sleep, off
 - · Significant progress in last decade
- Energy = power x time
 - -Need to address time dimension
 - Primary problem... products fully on but not needed

Energy alone not enough

*does not include PCs, monitors, or IP infrastructure

Unsatisfactory approaches

- Do nothing (status quo)
 - Waste energy, annoy people
- · Command and control, from:
 - · Individual devices based on their activity
 - Remote controls based on requested function
 - Brittle, error-prone, not automatic, requires configuration, ...
 - Can't handle emerging usages
- · Single technology solutions
- Few buildings (will) have single technologies $_{\mbox{\scriptsize Slide 4 of 21}}$

The Solution — End Result

Audio/Video Inter-Device Power Control (A/V PC)

- · Distributed, self-control
- Automatic* default no configuration

"wake up when need to; go to sleep when can"

Goal: deliver energy savings AND more convenience

The Solution — Devices

*as much as possible

The Solution — Mechanism

"Sleeping Streams"

Stream

 sequence of links across which A/V content is passed

- association among devices
- the whole stream

Today

• streams states: active or torn down

Proposal

- create a stream sleep state
- · exists but is not active

Slide 7 of 21

Assumptions

- Future devices will almost always toggle between on and sleep (rarely be off; have a sleep state)
- · Future devices will retain network connectivity in sleep
 - Participate in protocols for discovery, etc.
 - Notice when events occur that should wake device
- Devices and technologies should not rely on the presence of central control
 - Does not rule out using central control; makes it simpler
- Streams will have names (for device and user use)
 - Users will know about stream names and sleep states
- Many streams will pass over more than one technology (e.g. IP, HDMI, and WISA)

Slide 8 of 21

Stream/Device dynamics

- Transitions
- · Power/stream states (on, sleep, off)

Slide 9 of 21

Example streams

Movie in Living Room	(finite)	
 Sports all over Multiple displays (sinks) 		(real-time)
Door camera (w/ or w/o audio) Kitchen and living room display	(finite)	(real-time)
Skype call Kitchen display, camera	(finite)	(real-time)
Music everywhere		

- Stream attributes: finite/not, real-time/not
- Multiple streams may converge on single display
- · Recorded streams may involve no display

Slide 10 of 21

How would a sleeping stream work?

- · Streams created only when all devices awake
 - Simplifies device discovery, security
- Multiple streams may be active at same time
 - (and many more asleep)
- Waking stream should be (much) faster than creating anew
- · Each device knows identity of all other devices in stream
 - Even if don't share a technology
- · Will need to be understood by users
 - Design user interaction from beginning

Example Use Case: Wake Blu-ray Player (BD=Blu-ray Disk)

Step	BD	TV	Stream	Action and Behaviors
START	Sleep	Sleep	Sleep	
				BD power-up command (manual or internal timer) or manual play command
1	Wake			
2			Wake	BD wakes up last stream it participated in
3		Wake		Stream involves TV so TV must power up
4		Input		Change Input (if necessary)
5	Play		On	Start content (only after both devices fully wake; only applies to fixed streams)
END	On	On	On	

Slide 11 of 21 Slide 12 of 21

General sequence of Use Cases

- Initial device action (user or internal)
 - → Stream action/behavior
 - → Other device actions/behaviors
- Initial stream action (user or internal)
 - → Device actions/behaviors
- · Sequence does not end until all devices and stream exit transition states
- · Device power states linked by stream states

Development process

- · Created use cases
- · Extracted behaviors
- · Digested behaviors

Slide 13 of 21

Use case summary

One-Device Cases

Device Powered Up

Device Powered Down (timer, manual, or presence of a signal)

Device Powered Down (signal or occupancy) Device Put to Sleep (auto-power down)

Two-Device Cases

Source powered up Sink powered up Fixed Source ends Source paused Sink switched away from source Sink powered down Sink switched to Source Source powered down

Fixed Sink finishes Three-Device Cases

> Intermediate powered up Intermediate powered down

> > Stream to sleep

Stream-focused Cases

Failure Cases Failure while active

Failure on power on

Stream woken

Slide 14 of 21

Many other cases considered — did not introduce new behaviors

Resulting behaviors - Sinks

On

Notified stream to go to sleep

Switched to different source/stream

- Go to sleep

- Put old stream to sleep

- Wake new stream

Powered down

Switched to different input - Tell old stream to go to sleep

- Tell stream to go to sleep

- Wake new stream

Fixed sink ends

- Tell stream to go to sleep

Sleep

Notified that a stream is waking

- Wake self

- Wake self

Inter

Powered up

- Change input (if needed)

- Wake stream

Sinks

Also behaviors for: sources, intermediates, streams, failure

Slide 15 of 21

Stream states

- · Three long-term stable states
- · Three intermediate states
 - Transition times
 - Final state uncertain
- · Off means stream dismantled

"GTS" = Going To Sleep

Slide 16 of 21

Also considered ...

- · Multiple streams
- · Named streams
- · Multiple sinks and/or sources
- · Creating streams
- · Changing stream structure
- Failure
- · Occupancy sensors
- · Emergency broadcasts
- · Diverging audio and video
- · Sleeping intermediate devices
- · HDMI switches
- · Legacy devices

Summary

- · Stream management is a problem
 - User experience
 - Energy
- · Need common architecture
 - Simple concepts
 - Works across technologies
- · Sleeping Stream concept appears to meet needs
 - Layer into existing standards; not new protocol

Slide 17 of 21 Slide 18 of 21

Sources

Next steps

- Create overall standard create CEA working group
 - Needed capabilities for protocols
 - Standard device behaviors
- Add content to stream management standards
 - UPnP, HDMI, Airplay,
- Add behaviors to devices
- Explain to public
- Save energy; deliver more convenience

Slide 19 of 21

Slide 21 of 21

Thank you

Bonus Topic

Local Power Distribution

- Move from unitary grid to network model of power
- Technology to do for power distribution what the Internet did for communication

more at: http://nordman.lbl.gov (or ask me)

Slide 20 of 21